Germany Project Notice - Quantum Gravity Searches With Neutrino Telescopes


Project Notice

PNR 58030
Project Name Quantum GRavity seArches with Neutrino Telescopes
Project Detail The Standard Model of particle physics and General Relativity are expected to merge into a new theory of Quantum Gravity (QG) at energies approaching the Planck scale. However, none of the proposed QG approaches has been validated to date. In this context, several signatures of QG effects in accessible energy regimes, known as “Windows on Quantum Gravity”, have been postulated. In particular, quantum decoherence (QD) or QG-induced violation of Lorentz invariance (LIV), could cause modifications in neutrino oscillation patterns accessible to observation with neutrino telescopes. With QGRANT, I propose a global and novel search for QG effects with the IceCube, ANTARES and KM3NeT neutrino telescopes. The expected results will allow to probe QD and LIV parameters regions not accessible to date. Moreover, the phenomenon of QD will provide new possibilities to investigate the neutrino nature as a Dirac or Majorana particle as well as to trace possible violations of CPT symmetry in neutrino oscillations. Such a phenomenon represents a totally new scenario where to test the real nature of neutrinos. Within QGRANT, I will analyse the huge amount of data collected by IceCube, ANTARES and KM3NeT, Europes most ambitious project of a high energy neutrino telescope, whose effective mass, angular resolution and wide energy coverage, will make it an ideal instrument to further this research area. The proposed analysis will provide unprecedented sensitivity to QG effects and it will open uncharted territory for new discoveries. A planned cooperation with experts on QG will reinforce the theoretical impact of QGRANT in terms of QG models. The Erlangen Centre for Astroparticle Physics, with its globally unique situation of hosting IceCube and ANTARES/KM3NeT groups, together with the Quantum Gravity institute, represents the perfect host institution for my proposed research and my development as an independent physicist.
Funded By European Union (EU)
Sector BPO
Country Germany , Western Europe
Project Value EUR 189,687

Contact Information

Company Name FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN-NUERNBERG
Web Site https://cordis.europa.eu/project/id/101068013

Tell us about your Product / Services,
We will Find Tenders for you