| Project Detail |
The University of California, Santa Barbara (UCSB) is developing ultrawide-bandgap switching devices that would achieve a five times higher voltage than the state-of-the-art, enabling more sophisticated control methods for the grid. The proposed switching devices take advantage of beta-gallium oxide, an ultrawide-bandgap material that possess inherently superior properties compared with legacy silicon switching devices. UCSB’s switching device will be optically powered and controlled to limit the effects of electromagnetic interference. |