Switzerland Project Notice - De-Railing Scaling: From Fundamentals Of Crystallization Fouling On Nano-Materials To Rational Design Of Scale-Phobic Surfaces


Project Notice

PNR 36612
Project Name De-railing scaling: From fundamentals of crystallization fouling on nano-materials to rational design of scale-phobic surfaces
Project Detail Crystallization fouling, a process where scale forms on surfaces, is pervasive in nature and technology, negatively impacting the energy conversion and water treatment industries. Despite significant efforts, rationally designed materials that are intrinsically resistant to crystallization fouling without the use of active methods like antiscalant additives (which can persist long after their disposal and the toxicological impact of which in effluent is questioned) remain elusive. This is because antiscalant surfaces are constructed today without sufficient reliance on an intricate but necessary science-base, of how interweaved interfacial thermofluidics, nucleation thermodynamics, and surface nanoengineering control the onset of nucleation and adhesion of frequently encountered scaling salts like calcium carbonate and calcium sulfate. Such scaling salts are common components of fouling deposits in industrial heat exchangers and membranes, which significantly inhibit heat transfer and flow performance. Therefore, guided by interfacial thermofluidic and thermodynamics theories, and employing advanced experimental methods in the areas of surface nanoengineering and diagnostics, this project will develop an integrated knowledge-base for how engineered surfaces can beneficially interact with interfacial transport phenomena in order to significantly advance antiscalant surfaces. We aim to pinpoint mechanisms for inhibiting scale nucleation and reducing adhesion in order to design and engineer antiscalant materials based on the collaborative action of their composition and topography. The effects of surface texture curvature, surface composition, and substrate compliance on scale nucleation and adhesion have intertwined and sometimes competing impacts, which we aim at elucidating to realize high performance scale-phobic surfaces. Connected to this are cutting edge materials fabrication techniques and considerations to the development of surfaces for future applications.
Funded By European Union (EU)
Sector Information Technology
Country Switzerland , Western Europe
Project Value CHF 1,963,625

Contact Information

Company Name EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Address Raemistrasse 101 8092 Zuerich
Web Site https://cordis.europa.eu/project/rcn/225242/factsheet/en

Tell us about your Product / Services,
We will Find Tenders for you