United Kingdom Project Notice - Fundamental And Applied Science Using Two Dimensional Angstrom-Scale Capillaries


Project Notice

PNR 35439
Project Name Fundamental and Applied Science using Two Dimensional Angstrom-scale capillaries
Project Detail I will construct and apply next generation capillary devices as an exciting experimental platform to enable ground-breaking investigation of structure and dynamics of water at the ultimate molecular scale. These devices are in a lab-on-a-chip type configuration with angstrom-scale channels and atomically smooth walls. I am making them by scrupulous assembly tools in a controllable and reproducible fashion and they are extremely stable. Myself and my team will assemble capillaries of a few microns in length, by sandwiching two blocks of layered crystals, e.g., mica, graphite, boron nitride, separated by an atomically thin 2D-crystal spacer. Inside these channels, we will image water condensation along with simultaneous structure analysis by spectroscopy, under in-situ (temperature, pressure) environments. Another key aim of the project is to produce 2D slit-like pores on a large scale by slicing the pre-made 2D capillaries using sharp diamond knives, and explore their applications in size selective separation and biomolecular translocation. This ambitious research program is only possible because of my extensive angstrom-scale fabrication expertise, coupled with world leading fabrication capabilities at the University of Manchester. Objectives 1: To utilize angstrom-scale capillaries constructed out of two-dimensional (2D) materials as a versatile platform for studying confinement effect on structure and dynamics of water. 2: To construct new types of angstrom-scale 2D-pores from these capillaries for studying size-selective molecular separation, biomolecular sequencing and translocation. The project will have a lasting impact in understanding what the angstrom-scale confinement offers in terms of active control of molecular transport. Such confinement effects are efficiently utilized in various natural systems (e.g., protein channels) and the results could even aid in designing elementary building blocks of stimuli responsive artificial fluidic circuitry
Funded By European Union (EU)
Sector Science & Technology
Country United Kingdom , Western Europe
Project Value GBP 1,619,466

Contact Information

Company Name THE UNIVERSITY OF MANCHESTER
Address Oxford Road M13 9pl Manchester
Web Site https://cordis.europa.eu/project/rcn/225108/factsheet/en

Tell us about your Product / Services,
We will Find Tenders for you