Subscribe     Pay Now

United Kingdom Project Notice - Design-For-Manufacture Of 3D Concrete Printed Structural Composites (Dfm:3DCP)


Project Notice

PNR 30696
Project Name Design-for-manufacture of 3D concrete printed structural composites (DfM:3DCP)
Project Detail The development and modernisation of UK infrastructure requires the ubiquitous use of concrete, but conventional casting methods are inefficient, inflexible and dangerous. The UK Industrial Strategy White Paper identifies that the UK has insufficient skilled labour to undertake the next 10 to 20 years of essential infrastructure development, to deliver the £600Bn National Infrastructure and Construction Pipeline. Hence, the development of world-leadership in automation of key parts of the construction supply chain is critical. 3DCP removes the need for conventional moulds or formwork, by precisely placing and solidifying specific volumes of cementitious material in sequential layers under a computer controlled positioning process. This represents a radical mould-breaking change, that challenges the implicit mind-sets of architects and engineers, where for millennia casting has required moulds, which in turn constrain the form, geometry and variety of building components and systems. 3DCP technology implicitly binds design and manufacture in contrast to current practice where designers and constructors are separated organisationally, institutionally and professionally. 3DCP is creating worldwide interest from the construction sector and lends itself to using readily available robotic arms as positioning tools for clever material deposition devices, which enable the manufacture of components to be digitally driven. However the required pull into commercialisation requires architects and engineers to engage their clients with designs suitable for the manufacturing process. However the underlying science as it relates to concrete composite materials simply does not exist. This project will be the first in the world to systematically investigate the interrelationships between rheology, process control, design geometry and reinforcement design in relation to there impact on the hardened properties of the final material. The project goes further and makes the first seps towards encoding the rules learnt into a software environment that will seed the development of new design software in the future.
Funded By Self-Funded
Sector Construction
Country United Kingdom , Western Europe
Project Value GBP 879,327

Contact Information

Company Name Loughborough University

Tell us about your Product / Services,
We will Find Tenders for you