Germany Project Notice - Challenging The Fundamental Limit Of Angular Dispersion By Hybridizing Light And Matter


Project Notice

PNR 56311
Project Name Challenging the fundamental limit of angular dispersion by hybridizing light and matter
Project Detail Interference is one of the most fundamental phenomena in optics, allowing us to confine, filter, manipulate and steer light with exquisite precision. It is at the core of thin-film optics and nanophotonics, two areas of science that catalyse major scientific and industrial advances. One fundamental property of optical interference, however, constitutes a major limitation – the characteristics of any interference-based structure depend on the angle between the light wave and the structure itself (e.g. the transmission wavelength of optical interference filters shifts strongly when the angle of incidence changes). So far, this ‘angular dispersion’ effect remains a largely unchallenged fundamental limit in optics. HyAngle now proposes a novel strategy based on hybridizing light and matter states to break the angular dispersion limit. By tuning the coupling strength and offset between a photonic resonance formed by optical interference and the electronic resonance causing optical absorption in a material, I expect to be able to realize interference-based optical devices with spectrally sharp and angle-independent transmission, reflection and emission. We will explore the physics, potential and limitations of this approach by developing and studying dispersion-free optical filters, colour converters and LEDs with narrowband spectra. We will then pursue two specific applications, namely hyperspectral cameras and bio-implantable lensless fluorescence microscopes, where our devices will enable major advances in capability and unprecedented performance in deep tissue applications. Our devices use organic materials that can be readily processed by high-throughput vacuum deposition and even from solution. The amorphous nature of these materials renders them intrinsically compatible with the dielectric and metallic films widely used in the optics and display industry. The strategy of HyAngle thus bears great potential for rapid development and broad application.
Funded By European Union (EU)
Country Germany , Western Europe
Project Value EUR 2,500,000

Contact Information

Company Name UNIVERSITAT ZU KOLN
Web Site https://cordis.europa.eu/project/id/101097878

Tell us about your Product / Services,
We will Find Tenders for you