Global Projects Information

Get latest news on International Projects. Upcoming Global Project News & New Project Information world wise. Search International & Global Projects for Infrastructure work, Power Projects, Energy Sector Oil & Gas Projects, Projects from Government sector, Railway, Water supply & sanitation work across the world. Search latest Global Projects News from Bid Detail.

1.

THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN

Lifshitz holography: hydrodynamics and the large-D limit

  • 184,591
  • Ireland
view notice less notice
Lifshitz holography: hydrodynamics and the large-D limit
Company Name THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Funded By 38
Country Ireland , Northern Europe
Project Value 184,591
Project Detail

Holography is the powerful statement that two seemingly distinct theories, a theory of gravity and a field theory, describe the same physics. In this proposal I focus on Lifshitz holography, a not very well understood version of the duality, that relates non-relativistic strongly-coupled field theories and gravity realized on Lifshitz spacetimes. The aim of the project is to further develop Lifshitz holography by taking advantage of recent progress in non-relativistic hydrodynamics and the development of the large-D tool. The research objectives(ROs), each forming a separate work package, are: - Flesh out the connections between gravity and fluid dynamics for non-relativistic theories, by developing the membrane paradigm for Lifshitz black holes. This will not only be a milestone in our understanding of Lifshitz holography itself and prepare the ground for a fully-fledged non-relativistic fluid/gravity correspondence, but it will also elucidate the infrared properties of these theories, identify universal behaviours in transport coefficients and other observables and explore the generality of recently-proposed connections between hydrodynamics, non-hydrodynamic modes and chaos. - Extend the large-D tool to Lifshitz spacetimes and then use it to study holographically thermal transport in Lifshitz theories. The large-D is a technical development in general relativity realised on Anti-deSitter and flat spacetimes that leads to major simplifications of gravitational dynamics and thus eases the complexity of calculations. This objective will impact both holographic studies and gravity considerations in Lifshitz spacetimes. To achieve these ROs, I will mainly study various aspects of quasinormal modes. These modes not only contain information about black hole dynamics in the sense of characterising the dissipation of the perturbed horizon, but they are also associated with poles of the corresponding real-time Greens functions in a holographically dual theory.

Sector Administration & Marketing

Contact Details

Company Name THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Address College Green 2 Dublin
Web Site https://cordis.europa.eu/project/rcn/222705/factsheet/en

2.

UNIVERSITAT WIEN

Holography for Asymptotically Flat Spacetimes

  • 27 Million
  • Austria
view notice less notice
Holography for Asymptotically Flat Spacetimes
Company Name UNIVERSITAT WIEN
Funded By 38
Country Austria , Western Europe
Project Value 27 Million
Project Detail

Even after more than 100 years Einstein’s theory of General Relativity still resists a complete understanding at the quantum level. Holographic dualities between theories of quantum gravity and quantum field theories such as the Anti-de Sitter/Conformal Field Theory correspondence have revolutionised the way we think about both subjects since its discovery. However, holographic applications to other – more realistic – setups such as asymptotically flat spacetimes still provide a fundamental challenge in theoretical physics. The aim of this project is to overcome this challenge by developing new holographic tools that involve the entire boundary of asymptotically flat spacetimes. The long-term goal of FlatHolo is to apply these tools to spacetimes such as e.g. the Schwarzschild or the Kerr-Newman black hole in order to gain a deeper understanding of these objects at a quantum level. The short-term goals of developing a concise framework for a putative dual quantum field theory and consequently relating boundary entanglement with bulk geometry are also of high interest for other scientific communities that are unravelling the intriguing relations between quantum information and geometry. This proposal combines my current expertise on non-AdS holography with extensive training by leading experts on various aspects of holography involving asymptotically flat spacetimes at Harvard University. The final stage of the project will be conducted at the University of Vienna whose complementary expertise on higher-spins, holography and gravitational physics provides the perfect environment to transfer my knowledge and skills gained during the outgoing phase. The outcomes of this project will be essential for a deeper understanding of holography in more realistic setups and will allow me to proceed with the next step in my career and reach professional maturity by qualifying for a permanent position as an independent researcher at a European research institution.

Sector Administration & Marketing

Contact Details

Company Name UNIVERSITAT WIEN
Address Universitatsring 1 1010 Wien
Web Site https://cordis.europa.eu/project/rcn/222578/factsheet/en

3.

KATHOLIEKE UNIVERSITEIT LEUVEN

Non-Archimedean limits of differential forms, Gromov-Hausdorff limits and essential skeleta

  • 166,320
  • Belgium
view notice less notice
Non-Archimedean limits of differential forms, Gromov-Hausdorff limits and essential skeleta
Company Name KATHOLIEKE UNIVERSITEIT LEUVEN
Funded By 38
Country Belgium , Western Europe
Project Value 166,320
Project Detail

In the beginning of 2000s Kontsevich and Soibelman have introduced two variants of the SYZ conjecture originating from string theory: a non-Archimeadean one and a differential-geometric one. Both of these conjectures posit existence of a singular affine manifold (the base of the SYZ fibration) that can be obtained either as a subset of the non-Archimedean analytic space associated to a family of complex projective Calabi-Yau varieties with maximally unipotent monodromy, or as a Gromov-Hausdorff limit of fibres of the family with Ricci-flat metric in the polarization class and normalized diameter (the latter was also independently conjectured by Gross, Wilson, and Todorov). Recent years have seen active developments in both of these conjectures through work of de Fernex, Kollár, Mustata, Nicaise, Xu, Gross, Tosatti, Zhang and others. Kontsevich and Soibelman have also conjectured that both approaches give the same result, with corresponding singular affine manifolds naturally isomorphic; unfortunately, the existence of such an isomorphism is open as of now. The aim of this project is to build tools that will allow both to attack the comparison conjecture and to make progress in the understanding of the collapsing Gromov-Hausdorff limits in the odd-dimensional case (hypekähler case having been extensively studied). The proposed approach is based on the theory of differential forms on non-Archimedean analytic spaces due to Chambert-Loir and Ducros. Firstly, a notion of a non-Archimedean limit of a degenerating family of real forms with values in Chambert-Loir-Ducros forms will be defined. Secondly, the metric structure of the collapsing limit will be described in terms of such non-Archimedean limits of Kähler forms. Thirdly, the canonical affine structure on the limit space conjectured to exist in the metric picture will be studied using non-Archimedean methods, assuming a natural statement about the limits of the solutions of Monge-Ampere equations.

Sector Administration & Marketing

Contact Details

Company Name KATHOLIEKE UNIVERSITEIT LEUVEN
Address Oude Markt 13 3000 Leuven
Web Site https://cordis.europa.eu/project/rcn/222386/factsheet/en

4.

CONSIGLIO NAZIONALE DELLE RICERCHE

Binuclear Iridium(III) Complexes for White-Emitting OLEDs

  • 171,473
  • Italy
view notice less notice
Binuclear Iridium(III) Complexes for White-Emitting OLEDs
Company Name CONSIGLIO NAZIONALE DELLE RICERCHE
Funded By 38
Country Italy , Western Europe
Project Value 171,473
Project Detail

The European Union set the ambitious target of increasing energy efficiency by 27% within 2030. Since ˜ 20% of the EU electrical energy is used for lighting, more efficient lighting concepts need to be developed. At present, inorganic light emitting diodes (LEDs) stand out as the best alternative to conventional lighting devices. In future, organic LEDs (OLEDs) are predicted to become the ultimate solution, since they allow fabrication of large-area flat and flexible devices; consequently, white-emitting OLEDs (WOLEDs) are actively investigated. Current WOLEDs require the use of multiple luminophores in a single device, but this leads to imbalanced white-light emission and colour instability, due to the different stability over time of each single emitter. Moreover, the incorporation of multiple emitters increases manufacturing costs. To overcome these drawbacks, attempts have been made to generate white-emission from a single multifunctional material. However, strong limitations were faced due to the complex synthetic procedures and the inability to control the excited-state properties of the emitter and its internal energy-transfer processes. In this scenario, we propose a new strategy for easy-to-synthesize binuclear cyclometalated iridium(III) complexes, displaying dual-emission for white-light generation from a single molecular entity. The strategy involves simultaneous generation of blue and orange emission from two electronically uncoupled Ir(III) centres, linked together by a non-conjugated bridging unit. This ambitious goal can be achieved due to the mutual interaction between the Experienced Researcher (ER) and the Host Institution (HI). While the ER has a strong background in the synthesis of luminescent complexes, the HI has a consolidated expertise in organic synthesis, theoretical and experimental photophysics, and in fabrication and testing of OLED devices. This combination of competencies will guarantee the successful implementation of this project.

Sector Administration & Marketing

Contact Details

Company Name CONSIGLIO NAZIONALE DELLE RICERCHE
Address Piazzale Aldo Moro 7 00185 Roma
Web Site https://cordis.europa.eu/project/rcn/222366/factsheet/en

5.

UNIVERSITE DE BORDEAUX

Experimental and numerical study of long runout landslides

  • 196,708
  • France
view notice less notice
Experimental and numerical study of long runout landslides
Company Name UNIVERSITE DE BORDEAUX
Funded By 38
Country France , Western Europe
Project Value 196,708
Project Detail

Landslides, the violent motion of large masses of debris, rock or snow, are an ever-present danger in mountainous regions the world over. After the landslide material falls down the mountainside, it will run out some distance away from the mountain even on relatively flat surfaces until the energy it gained from falling is dissipated by friction with the terrain. Although a simple energy balance argument suggests that a single rock cannot travel farther than the height from which it fell, many landslide runouts extend their ruin to seemingly safe distances far removed from their origin. These long runout landslides have baffled scientists for over a century, ever since Albert Heim recorded his study of the Elm rock landslide that devastated the village of Elm, Switzerland in 1881. There are many explanations for this phenomenon, such as lubrication by an interstitial fluid, but none of these satisfactorily addresses how a completely dry landslide can run out so far. Not understanding how and when long runouts will occur makes hazard mitigation and prediction extremely difficult, highlighting the urgency of this issue. Recently, Melosh and coworkers have provided support for a mechanism borrowed from the fluidization of impact craters, “acoustic fluidization”, by using idealized 2D simulations of circular disks, but more work is needed to show that this mechanism is a feature of real 3D flows and robust for a range of conditions. We will perform laboratory experiments and fully 3D simulations of granular flows using simultaneous pressure and velocity measurements to test the acoustic fluidization hypothesis. We will also look for a crossover between this dry mechanism and the lubrication mechanisms for wet landslides. Besides application to landslide engineering, we will also explore for the first time how fundamental features of granular flows such as shear flow instabilities (clustering and longitudinal stripes) affect the rheology of landslides and long runouts.

Sector Administration & Marketing

Contact Details

Company Name UNIVERSITE DE BORDEAUX
Address Place Pey Berland 35 33000 Bordeaux
Web Site https://cordis.europa.eu/project/rcn/221974/factsheet/en

6.

UNIVERSITA DEGLI STUDI DI MILANO

Photoelectrochemical Solar Light Conversion into Fuels on Colloidal Quantum Dots Based Photoanodes

  • 237,768
  • Italy
view notice less notice
Photoelectrochemical Solar Light Conversion into Fuels on Colloidal Quantum Dots Based Photoanodes
Company Name UNIVERSITA DEGLI STUDI DI MILANO
Funded By 38
Country Italy , Western Europe
Project Value 237,768
Project Detail

The efficient use of solar energy is vital for the future of our Planet and to ensure to the next generations our and even superior welfare standards. Photoelectrochemical water splitting is a promising way to convert solar light into storable fuels, such as H2. However, an ideal photoanodic material for the oxygen evolution half-reaction has not been identified yet. Technologies based on solution-processed colloidal quantum dots (CQDs) are promising for producing effective photoanodes because of their low manufacturing costs and the possibility of controlling the band gap of the material through the quantum size effect. The main scientific aim of the QuantumSolarFuels project is the preparation of photoanodes for water splitting based on CdSe, CdTe and CdSeTe CQDs and their protection against photocorrosion. The CQDs will be assembled in flat electrodes effectively protected against photocorrosion and activated toward water oxidation through: a) the deposition of amorphous TiO2 and subsequent coating with metal based oxygen evolution catalysts or b) by direct coating them with the oxygen evolution catalysts. Further objectives are: 1) the identification of the optimal CdSeTe composition and CQDs size for the preparation of efficient photoanodes; 2) the use of Cd-chalcogenide CQDs in solar cells and photo- and electro-catalysis for renewable fuels production. Thanks to this action the researcher will become a World expert in these areas, in particular in the innovative use of CQDs for photoelectrochemical water splitting applications. Taking full advantage of the complementary competences of the two involved research groups, the one at the beneficiary institution expert in the fundamental chemical aspects of photocatalysis and the partner group more focused on the engineering and industrial exploitation of CQD science, the QuantumSolarFuels project will provide crucial achievements for the future preparation of industrially compelling photoelectrochemical devices.

Sector Administration & Marketing

Contact Details

Company Name UNIVERSITA DEGLI STUDI DI MILANO
Address Via Festa Del Perdono 7 20122 Milano
Web Site https://cordis.europa.eu/project/rcn/221821/factsheet/en

7.

THE UNIVERSITY OF MANCHESTER

Nitrogen-Radical-Based Radical Strain-Release Strategies for the Divergent Assembly of Polyfunctionalized 3D-Building Blocks

  • 212,934
  • United Kingdom
view notice less notice
Nitrogen-Radical-Based Radical Strain-Release Strategies for the Divergent Assembly of Polyfunctionalized 3D-Building Blocks
Company Name THE UNIVERSITY OF MANCHESTER
Funded By 38
Country United Kingdom , Western Europe
Project Value 212,934
Project Detail

Nitrogen-containing compounds underpin every aspect of our life: they form the structural basis of almost all drugs, agrochemicals and materials. The invention of methods to form C–N bonds is of strategic importance to discover and evolve molecules with direct implications on our lives. Central to this quest is designing synthetic strategies able to explore novel areas of chemical space. As the pharmaceutical sector is now aware of the greater clinical success of molecules with 3D architectures, developing methods able to assemble 3D-shaped and saturated building blocks is a topic of continuous scientific endeavour. The small and strained bicyclo[1.1.1]pentyl motif has been identified as a valuable bioisoter to replace flat (2D) aromatics and improve the potency of lead molecules. However, difficulties in preparing and modifying this structural element have severely limited its use in medicinal chemistry. There is an urgent need to develop novel methods that can effectively manipulate and introduce this motif into organic compounds. This project seeks to substantially expand the fields of photocatalysis and nitrogen-radicals by introducing the concept of “photoredox strain-release”: a novel reactivity that explores the ability of nitrogen-radicals to react with strained hydrocarbons (eg propellane) and enable a unique preparation of polyfunctionalized bicyclo[1.1.1]pentylamines. This research capitalizes on recent developments of the host group that has disclosed 2 novel ways to effectively generate nitrogen radicals. This reactivity will be integrated with other reaction platform allowing the divergent 1-step construction of many important nitrogenated 3D-building blocks that cannot be prepared by any other method. The development of such an innovative and ambitious project at the University of Manchester will be facilitated by generating, transferring, sharing and disseminating knowledge, and will enhance my future career following the training plan envisioned.

Sector Administration & Marketing

Contact Details

Company Name THE UNIVERSITY OF MANCHESTER
Address Oxford Road M13 9pl Manchester
Web Site https://cordis.europa.eu/project/rcn/221756/factsheet/en

8.

UNIVERSITY OF HULL

A Novel Loop-Heat-Pipe (LHP)-based Data Centre Heat Removal and Recovery System Employing the Micro-channels Cold/Hot Plates

  • 224,934
  • United Kingdom
view notice less notice
A Novel Loop-Heat-Pipe (LHP)-based Data Centre Heat Removal and Recovery System Employing the Micro-channels Cold/Hot Plates
Company Name UNIVERSITY OF HULL
Funded By 38
Country United Kingdom , Western Europe
Project Value 224,934
Project Detail

Date centres consume 1.1-1.5% of the world’s total electricity supply and remain 15-20% of annual increase rate in power demand. Space cooling, owing to vast dissipation of the heat from the data-processing equipment to data centre space, has a very high cooling capacity, accounting for 30-40% of energy delivered into the space. Developing an effective heat removal and recovery system to prevent excessive equipment heat transmission to the space is critical to reducing energy consumption of the cooling system. The proposed MSCA programme aims to investigate an innovative a novel Loop-Heat-Pipe-based data centre heat removal and recovery system employing the micro-channels-cold/hot-plates(LHP-C/H-PLATE-4-DC), by integrating the excellence of the host applicants in loop-heat-pipe(LHP) and expertise of the researcher applicant in hot/cold plates for data processing equipment. The innovative features of the system lie in (1) microscopic interior spaces increase liquid evaporation rate and heat transfer of the LHPs; (2) sensor-controlled liquid upper-feeding and liquid/vapour separator prevent the dry-out and entrainment effects of the conventional LHPs; (3) flat-plate surface of the cold-plate enables a perfect contact with the skin of the data-processing equipment; and (4) novel heat/mass transfer analysis approaches employing the latest fractal and enthalpy/temperature-difference-driven heat transfer theories. The programme tasks include (a) concept development; (b) computer modelling; (c) prototype construction & testing; and (d) economic & environmental analyses. The programme will attract an experienced researcher with particular knowledge in data centre heat removal technologies into Europe. This will (a) achieve transfer of knowledge from outside into Europe, thus helping growing EU’s knowledge-based economy and society; (b) develop a long-term contact among the researcher and host/partner organisations; and (c) enable the advanced training to the researcher.

Sector Administration & Marketing

Contact Details

Company Name UNIVERSITY OF HULL
Address Cottingham Road Hu6 7rx Hull
Web Site https://cordis.europa.eu/project/rcn/221628/factsheet/en

9.

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

Ultra-Thick Multi-Material Battery Electrodes

  • 224,934
  • United Kingdom
view notice less notice
Ultra-Thick Multi-Material Battery Electrodes
Company Name THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Funded By 38
Country United Kingdom , Western Europe
Project Value 224,934
Project Detail

Over the past decades, significant advances have been achieved in the performance of Li-ion batteries by the development of new active materials and better understanding of energy storage and degradation mechanisms. One aspect of batteries that has received little attention so far, is the form factor of the electrodes. However, simple changes in the battery architecture, such as increasing the coating thickness, allows to drastically decrease the relative fraction of dead volume in the battery (e.g. separators and current collectors). Theoretically, it is possible to replace a stack of ten standard 50 µm thick electrode coatings by one 500 µm thick coating. This would result in up to 30% savings in weight as well as volume of the battery, and would be transformative for both portable electronics and electrical vehicles. However, this is fundamentally challenging because of 1) slow ion diffusion through thick electrodes, 2) high electric resistance through the thickness of the electrode, and 3) cracking and flaking challenges during the fabrication of thick electrodes. This MSCA Fellowship is building on novel gel electrodes developed by the applicant, which can be moulded into 3D geometries that allow to move away from the current flat battery morphology and to address the above challenges with thick battery electrodes. During this Fellowship, the dynamics of ion and electron transport in thick 3D interdigitated electrodes will first be simulated. Then, the electrochemical performance of the gels will be optimised, in particular, a phase separation method to improve Li-diffusion will be optimised. Next, the thermal moulding process will be optimised to create interdigitated electrodes which will be tested in half and full cells. Finally, the proposed fabrication process will be demonstrated on a roll-to-roll coater, which is important to prove its scalability to industrial stakeholders.

Sector Administration & Marketing

Contact Details

Company Name THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Address Trinity Lane The Old Schools Cb2 1tn Cambridge
Web Site https://cordis.europa.eu/project/rcn/221516/factsheet/en

10.

Cardiff University

EPSRC Centre for Doctoral Training in Compound Semiconductor Manufacturing

  • 7 Million
  • United Kingdom
view notice less notice
EPSRC Centre for Doctoral Training in Compound Semiconductor Manufacturing
Company Name Cardiff University
Funded By 107
Country United Kingdom , Western Europe
Project Value 7 Million
Project Detail

TOPIC: "Semiconductors" are often synonymous with "Silicon Chips". After all Silicon supported computing technologies in the 20th century. But Silicon is reaching fundamental limits and already many of the technologies we now take for granted are only possible because of Compound Semiconductors (CS). These technologies include The Internet, Smart Phones, GPS and Energy efficient LED lighting! CSs are also at the heart of most of the new technologies expected in the next few years including 5G wireless, ultra-high speed optical fibre connectivity, LIDAR for autonomous vehicles, high voltage switching for electric vehicles, the IoT and high capacity data storage. To date CSs are made in relatively small quantities using fairly bespoke manufacturing and manufacturers have had to put together functions by assembling discrete devices. But this is expensive and for many of the new applications integration is needed along the lines of the Silicon Integrated Chip. CDT research will involve: the science of large scale CS manufacturing (e.g. materials combinations to minimise wafer bow, new fabrication processes for non-flat surfaces); manufacturing integrated CS on Silicon and in applying the manufacturing approaches of Silicon to CS. The latter includes using generic processes and generic building blocks and applying statistical process control. By applying these approaches students will address and invent new ways to exploit the highly advantageous electronic, magnetic, optical and power handling properties of CSs and generate novel integrated functionality for sensing, data processing and communication. NEED: This CDT is a critical part of the strategic development of a CS Cluster supporting activity throughout the UK. It is part of the development of a wider training portfolio including apprenticeships and CPD activities, to train and upskill the CS workforce. Evidence of the critical need for a CDT, has been identified in a survey and analysis conducted by UK Electronics Skills Foundation highlighting the specific skills required in this rapidly growing high technology industrial sector. "We are looking for PhD level skills plus industry experience. We dont have the time to train up new staff." "There are no perfect employees for CS companies, as this is effectively a new area. Staff, including those with PhDs, either have silicon skills and need CS-specific training, or have CS skills and need training in volume tools and processes, either in the cleanroom or in packaging." - quotes from CS Skills Survey - Report UKESF July 2018. We have worked with the CSA Catapult utilising the skills need they have identified as well as companies across the spectrum of CS activities and are confident of the absorptive capacity: the expected PhD level jobs increase for the existing cluster companies alone would employ all the students and the CDT will support many more companies and academic institutions. APPROACH: a 1+3 programme where Year 1 is based in Cardiff, with provision via taught lectures using university approved level 7 modules and transferable skills training, hands on and in-depth practical training and workshop material supplied by University and Industry Partner staff. A dedicated nursery clean room to allow rapid practical progress, learning from peer group activity and then an industry facing environment with co-location with industry staff and manufacturing scale equipment, where they will learn the future CS manufacturing skills. This will maximise cross fertilisation of ideas, techniques and approach and maximise the potential for exploitation. Y2-Y4 consist of an in depth PhD project, co-created with industry and hosted at one of the 4 universities, and specialised whole cohort training and events, including communication, responsible innovation, entrepreneurship, co-innovation techniques and innovative outreach.

Sector Administration & Marketing

Contact Details

Filter Projects

Top